
MidVision

overcoming the pitfalls of
workflow based deployment
automation

A MidVision eBook

Workflows have historically been used to perform
routine system administration activities - such

as running batch jobs, housekeeping activities, and
executing scripts in specific orders. A workflow-based
automation allows the creation and visualisation of
sets of repeatable activities, and more recently tools
have evolved to deploy applications using workflows.

Recently, we’ve seen some articles discussing workflows

for deployment automation, specifically the problems

with using workflows for defining standardised, simple,

repeatable and scaleable deployments. This approach

has the advantage of being quick and easy to implement

- for instance, there is no requirement to learn relatively

complex script-based frameworks - but it comes with some

challenges that can manifest themselves as you increase

complexity and the scale of your deployment processes.

This eBook will explore some of these challenges which

may crop up when using workflow-based deployment

automation, and discusses the various ways that they can

be overcome.

MidVision

Workflows allow the user to visually model the deployment tasks that will run during a deployment. These
tasks could range from the lowest level functions such as creating files, folders, users and groups, to the

higher level tasks that might, as a single task, install an application into an application server with all of its
attendant configuration.

Workflows remove the need for difficult-to-maintain code and allow the enterprise to move away from dependency
on specialists in particular scripting languages. A clear visual overview of all processes means that failures are easy
to detect, pinpoint and fix quickly. A mixture of low and higher level tasks allows the user to pick the correct task
for the job, with the minimum of steps but with the flexibility to perform low level tasks where necessary, reducing
the need for manual steps.

So what are we trying to achieve with our workflow? Ultimately we should be able to model the deployment of
many different components, each at different versions, through multiple different target environments (targets) on
our route to production. For example, an internet banking deployment might involve many different components,
such as database updates, web server files and configuration, application server compiled code and configuration,
messaging services etc. These will need to be tested in many environments, such as development, integration test,
UAT, OAT, Pre-production and finally production. As we move through the environments we might go from one physical
instance of each component
in development through to
production where scaleability
and resiliency requirements
mean we have multiple
instances of each component.
All of this should be handled in
the workflow.

It is easy to see that creating a
single workflow to model all of
the above, in a single diagram,
would be potentially huge,
unwieldy, overcomplicated,
near impossible to maintain
and require constant updates.
Creating new workflows to
model further deployment
scenarios would involve
repeating a large number of the
steps of previous workflows,
which is time consuming and
error prone. So how can we
make the best use of workflows

without the pitfalls?

Start

Target

Send Email
Task

Backup
Task

Deploy!

Target

task flows (server orchestration)

Here at MidVision, we’ve given this problem a lot of

thought. We believe that a deployment tool should start by

supporting small pieces of workflow that encapsulate all the

tasks required to deploy or manage a single component on

a target server (or group of servers in a cluster). We call this

a task flow or orchestration. This orchestration should be

target neutral, capable of being run on every target where

this component will be deployed. We should aim to make

the orchestration declarative, such that the target is always

brought to the desired state. Careful design of tasks as well

as the flexibility of workflow will enable us to achieve this.

Of course, we’ll need to introduce target specificity into this

workflow, and this can be achieved by injecting target specific

parameters at deployment time. Such settings as database

passwords, port values, heap sizes or anything defined

in the orchestration should be capable of being injected,

by the use of variables in the workflow. We call these the

data dictionary parameters. The data dictionary should

be settable globally but be capable of being overridden at

target scopes, and together with the orchestration definition

and payload (internal and external resources) we define this

as a blueprint.

target specific and error branches

Of course there will be some task steps that only run on some server targets (for example additional checks

against change management tools in production, or perhaps some testing requiring a firewall to be stopped in

development). The deployment tool should allow you to model your orchestration to have a main stream with

tasks running on all servers, but occasionally branch off to perform ‘Target Specific’ tasks for those occasional

target task differences we all know exist. In this way your task flow is a common pattern you use over and over

again in a fully repeatable way. The task flow should also allow multiple failure branches to allow different cleanup

or rollback scenarios to be invoked depending on the task that fails.

conditionals and scripts

Support for simple conditionals and loops in the task flow enables the user to avoid writing code in scripts, in most

cases. If you do need to write scripted sections, you should be able to easily call the scripts, passing variables and

command line arguments, which can also be environment specific data dictionary values. It is even better if you

can enter the script code directly into an orchestration task, which removes the need of calling the actual script.

interrupting task flow and linked deployments

So having a task flow that runs on any server will have some drawbacks. Needing to perform operations on one

server part way through a deployment on a different server is a particular concern. For example we might need to

update a database between stopping and starting an application. To obviate this situation, it should be possible in

the deployment tool to allow the task flow orchestration running on a server to call back, via a web service, to the

framework server to call another orchestration to run on the same or a different server, either synchronously or

asynchronously. We call this a linked deployment. In the case above, we’d make the synchronous linked deployment

call to the database job between the stop and start application tasks, waiting for it to return before starting the

application. Alternatively, if t’s a manual task, you could add a ‘Manual Step’ task to email subscribers to let them

know to perform the manual step before restarting the paused deployment through the deployment tool console.

combining orchestration/target combinations
Now we have a number of server orchestrations with the

available targets to run on, we can combine these into our

higher level workflow or pipeline. A pipeline is a workflow

where we choose to design the order of orchestration/target

combinations, including scheduling, parallelism, promotions

and approvals. Some tasks will mirror those at the server

orchestration scope, such as Rest callouts to change

management tools, but mostly they will not. For example

we might have a database orchestration with development,

test and production targets, together with application server

and web server orchestrations running over similar targets.

These could all be ordered into a single pipeline deploying

everything, as well as in separate pipelines to deploy just

the database, application or web-server changes alone, but

reusing the same set of orchestration/targets.

So instead of a single large workflow, we now have a pipeline

managing a number of orchestration/target combinations.

Management now becomes rather simple. A change to the

task flow will make the change in all targets with no changes

needed in the pipeline. Adding a new target is simply a

matter of copying (cloning) a set of data dictionary (injected)

values and modifying those that are different in the new

environment. Then just add the new orchestration/target to

the correct location in the pipeline.

versioning and composite
releases
Up until this point, we haven’t considered versioning. Every

time we make a change to an orchestration or set of target data

dictionary values, we should be able to version this in a zipped

deployment package, which is a point in time representation

of the blueprint. When we create our pipeline, not only do we

select an orchestration/target combination, but also a version.

All targets for a specific orchestration in the pipeline will be at

the same version. It should be possible to copy pipelines and

change the versions of the components, to create multiple

composite release pipelines. We might also want to be able

to specify pipelines with the latest versions of some or all

components, or indeed new versions of some or all components,

where triggering the pipeline will automatically create new

versions of the underlying components prior to deployment.

in conclusion

Whilst the benefits of visibility and ease of use of graphical

workflows are clear, they can quickly become large and difficult

to manage for the deployment of complex environments

with many components. By breaking down the workflows

into management pipelines of combinations of target neutral

server orchestrations with injected environment differences,

management can be greatly simplified because task flows can

be reused across multiple targets and pipelines, without the

need to duplicate changes.

MidVision

